Search results

Search for "perovskite oxides" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • ), Chengalpattu district, Kelambakkam, Tamil Nadu, 603103, India 10.3762/bjnano.13.79 Abstract LaFexNi1−xO3 perovskite oxides were prepared by the sol–gel method under various conditions, including different pH values (pH 0 and pH 7) and different calcination temperatures (500–800 °C) as well as different Fe/Ni
  • ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFexNi1−xO3 perovskite oxides to
  • decompose the methylene blue molecules. Accordingly, the synthesis condition of pH 0, calcination temperature at 700 °C, and Fe/Ni ratio = 7/3 could form LaFe0.7Ni0.3O3 perovskite oxides as highly efficient photocatalysts. Moreover, various conditions during the photocatalytic degradation were verified
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • semiconductors such as conjugated polymers [8] as well as some perovskite oxides [9][10][11]. Perovskites have the general formula ABX3, where the A cation in a cuboctahedral site coordinates with 12 anions, and the B cation in an octahedral site coordinates with 6 anions. New perovskite materials under
  • hand, the manganite oxide perovskites are strongly correlated electron systems that exhibit a strong electron–phonon interaction. This leads to the formation of small polarons [21]. The polaron-like character of the quasi-particles in perovskite oxides provides at least two exciting issues related to
  • bending, this leads to sharp discontinuities of the band structure at the interface and is modelled in the framework of a sharp junction [30]. In many perovskite oxides, the band structure is determined to a large degree by the correlation interactions [31]. Since these correlations strongly depend on the
PDF
Album
Full Research Paper
Published 07 Jul 2015
Other Beilstein-Institut Open Science Activities